LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034
B.Sc. DEGREE EXAMINATION – MATHEMATICS
FIRST SEMESTER – APRIL 2014
PH 1101 - PHYSICS FOR MATHEMATICS - I
Date : 28/03/2014 Dept. No. Max. : 100 Marks Time : 09:00-12:00
PART A
Answer ALL the questions $(10 \times 2 = 20)$
1. What is holonomic constraint? Give an example.
2. Draw the distance – time and velocity – time graph for a particle moving with constant velocity.
3. What is meant by gravitational red shift?
4. State any two Kepler's laws of planetary motion.
5. Write Stoke's formula for surface tension.
6. State Hooke's law of elasticity.
7. Mention a few characteristics of an ideal op-amp.
8. Draw the circuit for AND and NAND gates and tabulate the truth table.
9. If 4kg of a substance is fully converted into energy, how much energy is produced?
10. State the two postulates of special theory of relativity.
PART – B
Answer any FOUR questions $(4 \times 7.5 = 30)$
11. Derive expressions for maximum height, time of flight and range of a body projected at an angle with
the horizontal direction.
12. a) State Newton's law of gravitation. Give the unit of 'G'. (3)
b) Estimate the mass of the sun, assuming the orbit of the earth round the sun to be a circle. The
distance between the sun and the earth is 1.49×10^{11} m and G = 6.66×10^{-11} Nm ² /kg ² . (4.5)
13. Derive an expression to calculate the excess of pressure inside a soap bubble.
14. Simplify using K-map Y = F (A,B,C,D) = $\sum (1,3,5,7,9,11,12,13,14,15)$
15. Derive an expression for length contraction and time dilation. (4+3.5)
PART – C
Answer any FOUR questions $(4 \times 12.5 = 50)$
16. Solve Lagrange's equation for i) Simple Pendulum ii) Atwood's machine.
17. a) What is parking orbit? Calculate the velocity of satellite to be in it. (4)
b) Define escape velocity. Show that the escape velocity from the surface of the earth is 11km/s. (8.5)
18. Derive an expression to calculate the surface tension and angle of contact of mercury using Quincke's method. Explain the experimental method to calculate the same.
19. With a neat circuit diagram explain the construction and working of a J-K flip flop.
20. a) Deduce the formula for relativistic variation of mass with velocity. (10)
b) A particle of a mass $10x \ 10^{-24}$ kg is moving with a speed of $1.8 \ x \ 10^8$ m/s. Calculate its mass when
it is in motion. (2.5)
