

PART - B

Answer any FOUR questions
11. Derive expressions for maximum height, time of flight and range of a body projected at an angle with the horizontal direction.
12. a) State Newton's law of gravitation. Give the unit of ' G '. (3)
b) Estimate the mass of the sun, assuming the orbit of the earth round the sun to be a circle. The distance between the sun and the earth is $1.49 \times 10^{11} \mathrm{~m}$ and $\mathrm{G}=6.66 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$.
13. Derive an expression to calculate the excess of pressure inside a soap bubble.
14. Simplify using K-map $Y=F(A, B, C, D)=\sum(1,3,5,7,9,11,12,13,14,15)$
15. Derive an expression for length contraction and time dilation. (4+3.5)

PART - C

Answer any FOUR questions
16. Solve Lagrange's equation for i) Simple Pendulum ii) Atwood's machine.
17. a) What is parking orbit? Calculate the velocity of satellite to be in it. (4)
b) Define escape velocity. Show that the escape velocity from the surface of the earth is $11 \mathrm{~km} / \mathrm{s}$. (8.5)
18. Derive an expression to calculate the surface tension and angle of contact of mercury using Quincke's method. Explain the experimental method to calculate the same.
19. With a neat circuit diagram explain the construction and working of a J-K flip flop .
20. a) Deduce the formula for relativistic variation of mass with velocity. (10)
b) A particle of a mass $10 \times 10^{-24} \mathrm{~kg}$ is moving with a speed of $1.8 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Calculate its mass when it is in motion.

